Spectral structure of singular spectrum decomposition for time series

نویسندگان

  • Kenji Kume
  • Naoko Nose-Togawa
چکیده

Singular spectrum analysis (SSA) is a nonparametric and adaptive spectral decomposition of a time series. The singular value decomposition of the trajectory matrix and the anti-diagonal averaging leads to a time-series decomposition. In this algorithm, a single free parameter, window length K, is involved which is the FIR filter length for the time series. There are no generally accepted criterion for the proper choice of the window length K. Moreover, the proper window length depends on the specific problem which we are interested in. Thus, it is important to monitor the spectral structure of the SSA decomposition and its window length dependence in detail for the practical application. In this paper, based on the filtering interpretation of SSA, it is shown that the decomposition of the power spectrum for the original time series is possible with the filters constructed from the eigenvectors of the lagged-covariance matrix. With this, we can obtain insights into the spectral structure of the SSA decomposition and it helps us for the proper choice of the window length in the practical application of SSA. Department of Physics, Nara Women’s University, Nara 630-8506, Japan. Research Center for Nuclear Physics, Osaka University, Ibaraki 567-0047, Japan

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Projectors in Singular Spectrum Analysis

Singular spectrum analysis (SSA) is a method of time-series analysis based on the singular value decomposition of an associated Hankel matrix. We present an approach to SSA using an effective and numerically stable high-degree polynomial approximation of a spectral projector, which also provides a means of time-series forecasting. Several numerical examples illustrating the algorithm are given.

متن کامل

Automatic Singular Spectrum Analysis for Time-Series Decomposition

An automatic Singular Spectrum Analysis based methodology is proposed to decompose and reconstruct time-series. We suggest a clustering based procedure to identify the main dynamics of the input signal, by computing a subset of orthogonal basis using a power spectrum criterion. The subset of basis are represented by the Discrete Fourier Transform to infer basis vectors encoding similar data str...

متن کامل

کاربرد آنالیز طیفی بیزی در تحلیل سری‌های زمانی نورسنجی

The present paper introduces the Bayesian spectral analysis as a powerful and efficient method for spectral analysis of photometric time series. For this purpose, Bayesian spectral analysis has programmed in Matlab software for XZ Dra photometric time series which is non-uniform with large gaps and the power spectrum of this analysis has compared with the power spectrum which obtained from the ...

متن کامل

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1507.07330  شماره 

صفحات  -

تاریخ انتشار 2015